3.289 \(\int \text{sech}^3(c+d x) (a+b \sinh ^2(c+d x)) \, dx\)

Optimal. Leaf size=42 \[ \frac{(a+b) \tan ^{-1}(\sinh (c+d x))}{2 d}+\frac{(a-b) \tanh (c+d x) \text{sech}(c+d x)}{2 d} \]

[Out]

((a + b)*ArcTan[Sinh[c + d*x]])/(2*d) + ((a - b)*Sech[c + d*x]*Tanh[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0395048, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3190, 385, 203} \[ \frac{(a+b) \tan ^{-1}(\sinh (c+d x))}{2 d}+\frac{(a-b) \tanh (c+d x) \text{sech}(c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^3*(a + b*Sinh[c + d*x]^2),x]

[Out]

((a + b)*ArcTan[Sinh[c + d*x]])/(2*d) + ((a - b)*Sech[c + d*x]*Tanh[c + d*x])/(2*d)

Rule 3190

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
 1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \text{sech}^3(c+d x) \left (a+b \sinh ^2(c+d x)\right ) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{a+b x^2}{\left (1+x^2\right )^2} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=\frac{(a-b) \text{sech}(c+d x) \tanh (c+d x)}{2 d}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{2 d}\\ &=\frac{(a+b) \tan ^{-1}(\sinh (c+d x))}{2 d}+\frac{(a-b) \text{sech}(c+d x) \tanh (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0229631, size = 71, normalized size = 1.69 \[ \frac{a \tan ^{-1}(\sinh (c+d x))}{2 d}+\frac{a \tanh (c+d x) \text{sech}(c+d x)}{2 d}+\frac{b \tan ^{-1}(\sinh (c+d x))}{2 d}-\frac{b \tanh (c+d x) \text{sech}(c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^3*(a + b*Sinh[c + d*x]^2),x]

[Out]

(a*ArcTan[Sinh[c + d*x]])/(2*d) + (b*ArcTan[Sinh[c + d*x]])/(2*d) + (a*Sech[c + d*x]*Tanh[c + d*x])/(2*d) - (b
*Sech[c + d*x]*Tanh[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [B]  time = 0.069, size = 82, normalized size = 2. \begin{align*}{\frac{a{\rm sech} \left (dx+c\right )\tanh \left ( dx+c \right ) }{2\,d}}+{\frac{a\arctan \left ({{\rm e}^{dx+c}} \right ) }{d}}-{\frac{b\sinh \left ( dx+c \right ) }{d \left ( \cosh \left ( dx+c \right ) \right ) ^{2}}}+{\frac{b{\rm sech} \left (dx+c\right )\tanh \left ( dx+c \right ) }{2\,d}}+{\frac{b\arctan \left ({{\rm e}^{dx+c}} \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^3*(a+b*sinh(d*x+c)^2),x)

[Out]

1/2/d*a*sech(d*x+c)*tanh(d*x+c)+1/d*a*arctan(exp(d*x+c))-1/d*b*sinh(d*x+c)/cosh(d*x+c)^2+1/2/d*b*sech(d*x+c)*t
anh(d*x+c)+1/d*b*arctan(exp(d*x+c))

________________________________________________________________________________________

Maxima [B]  time = 1.52533, size = 184, normalized size = 4.38 \begin{align*} -b{\left (\frac{\arctan \left (e^{\left (-d x - c\right )}\right )}{d} + \frac{e^{\left (-d x - c\right )} - e^{\left (-3 \, d x - 3 \, c\right )}}{d{\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + 1\right )}}\right )} - a{\left (\frac{\arctan \left (e^{\left (-d x - c\right )}\right )}{d} - \frac{e^{\left (-d x - c\right )} - e^{\left (-3 \, d x - 3 \, c\right )}}{d{\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + 1\right )}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3*(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

-b*(arctan(e^(-d*x - c))/d + (e^(-d*x - c) - e^(-3*d*x - 3*c))/(d*(2*e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c) + 1))
) - a*(arctan(e^(-d*x - c))/d - (e^(-d*x - c) - e^(-3*d*x - 3*c))/(d*(2*e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c) +
1)))

________________________________________________________________________________________

Fricas [B]  time = 1.52328, size = 903, normalized size = 21.5 \begin{align*} \frac{{\left (a - b\right )} \cosh \left (d x + c\right )^{3} + 3 \,{\left (a - b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} +{\left (a - b\right )} \sinh \left (d x + c\right )^{3} +{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \,{\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} +{\left (a + b\right )} \sinh \left (d x + c\right )^{4} + 2 \,{\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \,{\left (a + b\right )} \cosh \left (d x + c\right )^{2} + a + b\right )} \sinh \left (d x + c\right )^{2} + 4 \,{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} +{\left (a + b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a + b\right )} \arctan \left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right ) -{\left (a - b\right )} \cosh \left (d x + c\right ) +{\left (3 \,{\left (a - b\right )} \cosh \left (d x + c\right )^{2} - a + b\right )} \sinh \left (d x + c\right )}{d \cosh \left (d x + c\right )^{4} + 4 \, d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + d \sinh \left (d x + c\right )^{4} + 2 \, d \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, d \cosh \left (d x + c\right )^{2} + d\right )} \sinh \left (d x + c\right )^{2} + 4 \,{\left (d \cosh \left (d x + c\right )^{3} + d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3*(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

((a - b)*cosh(d*x + c)^3 + 3*(a - b)*cosh(d*x + c)*sinh(d*x + c)^2 + (a - b)*sinh(d*x + c)^3 + ((a + b)*cosh(d
*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a + b)*cosh(d*x + c)^2 + 2*
(3*(a + b)*cosh(d*x + c)^2 + a + b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a + b)*cosh(d*x + c))*sinh
(d*x + c) + a + b)*arctan(cosh(d*x + c) + sinh(d*x + c)) - (a - b)*cosh(d*x + c) + (3*(a - b)*cosh(d*x + c)^2
- a + b)*sinh(d*x + c))/(d*cosh(d*x + c)^4 + 4*d*cosh(d*x + c)*sinh(d*x + c)^3 + d*sinh(d*x + c)^4 + 2*d*cosh(
d*x + c)^2 + 2*(3*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^2 + 4*(d*cosh(d*x + c)^3 + d*cosh(d*x + c))*sinh(d*x +
c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**3*(a+b*sinh(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.18395, size = 143, normalized size = 3.4 \begin{align*} \frac{{\left (\pi + 2 \, \arctan \left (\frac{1}{2} \,{\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )} e^{\left (-d x - c\right )}\right )\right )}{\left (a + b\right )}}{4 \, d} + \frac{a{\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} - b{\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}}{{\left ({\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{2} + 4\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3*(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

1/4*(pi + 2*arctan(1/2*(e^(2*d*x + 2*c) - 1)*e^(-d*x - c)))*(a + b)/d + (a*(e^(d*x + c) - e^(-d*x - c)) - b*(e
^(d*x + c) - e^(-d*x - c)))/(((e^(d*x + c) - e^(-d*x - c))^2 + 4)*d)